EXAMPLES OF POTENTIAL INCINERATOR CONTROL OPTIC

Examples of Potential Incinerator Controls Provided for Incinerator Workgroup Review and Discussion

— Draft, 1/14/98 —

	Potential for "Substantial" Emission Reduction											
CONTROL OPTION	PN		Op	SO_2	HCl	NOx	СО	Pb	Cd	Hg	D/F	C
No control	f	t										Many incinerat their small size and/or absence control technol
Good combustion design and practice												For example, c rate and use of secondary char
Waste separation												A material sepa developed, bas waste. For exa plastics and ma metal emission
Baghouse/ESP												ESPs tend to be incinerator app may preclude to an upstream sc generation is a
Thermal oxidizer/afterburner												Sometimes use Effectiveness v unknown. Ger

Cyclone/multiclone						Older technolo applications.
Wet scrubber (low pressure or venturi) w/o water recycle						Acid gas format water recycles sulfur and chlo may occur (the enhance the reapollution
Dry acid gas/PM scrubbing system, including baghouse (DSI, dry sorbent injection system)						Can be a highly although cost n for smaller unit control can be cost. Creates s wastes.
Semi-dry acid gas/PM scrubbing system (spray dryer and baghouse)						Performs even costs are signif injection for H incremental co and solid waste
Low-NOx burners, combustion chamber design, SNCR (ammonia injection)						Uncertain about incinerators. C emissions.

^{*}f = fine particulate matter; t = total particulate matter.